COMP 233 Discrete Mathematics

Chapter 5 Sequences and Mathematical Induction

Outline

Sequences:

- Explicit Formulas;
- Summation Notation;
- Sequences in Computer Programming;

Proof by Mathematical Induction (I and II)

- Proving sum of integers and geometric sequences
- Proving a Divisibility Property and Inequality
- Proving a Property of a Sequence

Sequences

Idea: Think of a sequence as a set of elements written in a row:

 $a_1, a_2, a_3, \ldots, a_n$ finite sequence $a_1, a_2, a_3, \ldots, a_n, \ldots$ infinite sequence

Each individual element a_k is called a term. The k in a_k is called a subscript or index

Observe patterns

Determine the number of points in the 4th and 5th figure

Determine the next 2 terms of the sequence 4, 8, 16, 32, 64

Induce the formula that could be used to determine any term in the sequence

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

Finding Terms of Sequences Given by Explicit Formulas

Define sequences a_1, a_2, a_3, \ldots and b_2, b_3, b_4, \ldots by the following explicit formulas:

 $a_{k} = \underbrace{k}_{k+1} \text{ for some integers } k \ge 1$ $b_{i} = \underbrace{i \cdot 1}_{i} \text{ for some integers } i \ge 2$ Compute the first five terms of both sequences.

Compute the first six terms of the sequence c_0 , c_1 , c_2 ,... defined as follows: $c_j = (-1)^j$ for all integers $j \ge 0$.

Finding Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$1, \ \underline{-1}_{4}, \ \underline{1}_{9}, \ \underline{-1}_{16}, \ \underline{1}_{25}, \ \underline{-1}_{36}, \dots$$

$$a_k = \frac{-1^{k+1}}{k^2}$$
 for all integers $k \ge 1$.

$$a_k = \frac{-1^k}{(k+1)^2}$$
 for all integers $k \ge 0$.

Exercises

Example: Find an explicit formula for a sequence that has the following initial terms:

 $\frac{1}{3}, -\frac{2}{4}, \frac{3}{5}, -\frac{4}{6}, \frac{5}{7}, -\frac{6}{8}, \dots$ Solutions: The sequence satisfies the formulas for all integers $n \ge 0$, $a_n = (-1)^n \frac{n+1}{n+3}$

for all integers $n \ge 1$,

$$a_n = (-1)^{n-1} \frac{n}{n+2}$$

Summation Notation

Suppose $a_1, a_2, a_3, \ldots, a_n$ are real numbers. The "summation from *i* equals 1 to *n* of *a*-sub-*i*" is

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \dots + a_n.$$

Definition

If *m* and *n* are integers and $m \le n$, the symbol $\sum_{k=m}^{n} a_k$, read the summation from *k* equals *m* to *n* of *a*-sub-*k*, is the sum of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n .

We say that $a_m + a_{m+1} + a_{m+2} + \ldots + a_n$ is the **expanded form** of the sum, and we write

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + a_{m+2} + \dots + a_n.$$

We call k the **index** of the summation, m the **lower limit** of the summation, and n the **upper limit** of the summation.

Ex: Use summation notation to write the following sum:

$$\frac{1}{3} - \frac{2}{4} + \frac{3}{5} - \frac{4}{6} + \frac{5}{7} - \frac{6}{8}.$$

Solution: By the example on the previous slide, we can write:

$$\frac{1}{3} - \frac{2}{4} + \frac{3}{5} - \frac{4}{6} + \frac{5}{7} - \frac{6}{8} = \sum_{n=0}^{5} (-1)^n \left(\frac{n+1}{n+3}\right).$$

or:

$$\frac{1}{3} - \frac{2}{4} + \frac{3}{5} - \frac{4}{6} + \frac{5}{7} - \frac{6}{8} = \sum_{n=1}^{6} (-1)^{n+1} \left(\frac{n}{n+2} \right).$$

Exercises

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following:

a.
$$\sum_{k=1}^{5} a_{k}$$
 b. $\sum_{k=2}^{2} a_{k}$ c. $\sum_{k=1}^{2} a_{2.k}$

Example 5.1.4 Computing Summations

Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, and $a_5 = 2$. Compute the following: a. $\sum_{k=1}^{5} a_k$ b. $\sum_{k=2}^{2} a_k$ c. $\sum_{k=1}^{2} a_{2k}$

Solution

a.
$$\sum_{k=1}^{5} a_k = a_1 + a_2 + a_3 + a_4 + a_5 = (-2) + (-1) + 0 + 1 + 2 = 0$$

b.
$$\sum_{k=2}^{2} a_k = a_2 = -1$$

c.
$$\sum_{k=1}^{2} a_{2k} = a_{2 \cdot 1} + a_{2 \cdot 2} = a_2 + a_4 = -1 + 1 = 0$$

Write the following summation in expanded form:

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1}$$

$$\sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} = \frac{(-1)^{0}}{0+1} + \frac{(-1)^{1}}{1+1} + \frac{(-1)^{2}}{2+1} + \frac{(-1)^{3}}{3+1} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= \frac{1}{1} + \frac{(-1)}{2} + \frac{1}{3} + \frac{(-1)}{4} + \dots + \frac{(-1)^{n}}{n+1}$$
$$= 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n}}{n+1}$$

Expanded Form to Summation

Express the following using summation notation:

Separating Off a Final Term and Adding On a Final Term n *n*+1 Rewrite $\sum_{l=1}^{\infty} \frac{1}{l^2}$ by separating off the final term. $\sum_{i=1}^{n+1} \frac{1}{i^2} = \sum_{i=1}^{n} \frac{1}{i^2} + \frac{1}{(n+1)^2}$ n Write $\sum 2^k + 2^{n+1}$ as a single summation. $\sum_{k=1}^{n} 2^{k} + 2^{n+1} = \sum_{k=1}^{n+1} 2^{k}$ k=0k=0

Telescoping Sum

Product Notation

k = m

Definition

If *m* and *n* are integers and $m \le n$, the symbol $\prod_{k=m}^{n} a_k$, read the **product from** *k* equals *m* to *n* of *a*-sub-*k*, is the product of all the terms a_m , a_{m+1} , a_{m+2} , ..., a_n . We write $\prod_{k=m}^{n} a_k = a_m \cdot a_{m+1} \cdot a_{m+2} \cdots a_n$.

A recursive definition for the product notation is the following: If m is any integer, then

$$\prod_{k=m}^{m} a_k = a_m \quad \text{and} \quad \prod_{k=m}^{n} a_k = \left(\prod_{k=m}^{n-1} a_k\right) \cdot a_n \quad \text{for all integers } n > m.$$

Computing Products

- Compute the following products:
 - a. $\prod_{k=1} k$

= 1*2*3*4*5=120

■ = 1/2

Properties of Summations

Theorem 5.1.1

If $a_m, a_{m+1}, a_{m+2}, \ldots$ and $b_m, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and *c* is any real number, then the following equations hold for any integer $n \ge m$:

1.
$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

2.
$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k \quad \text{generalized distributive law}$$

3.
$$\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \prod_{k=m}^{n} (a_k \cdot b_k).$$

Let $a_k = k + 1$ and $b_k = k - 1$ for all integers k. Write each of the following expressions as a single summation or product:

a.
$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k$$
 b. $\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right)$

Solution

-

a.
$$\sum_{k=m}^{n} a_k + 2 \cdot \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (k+1) + 2 \cdot \sum_{k=m}^{n} (k-1)$$
 by substitution

$$= \sum_{k=m}^{n} (k+1) + \sum_{k=m}^{n} 2 \cdot (k-1)$$
 by Theorem 5.1.1 (2)

$$= \sum_{k=m}^{n} ((k+1) + 2 \cdot (k-1))$$
 by Theorem 5.1.1 (1)

$$= \sum_{k=m}^{n} (3k-1)$$
 by algebraic
simplification
b.
$$\left(\prod_{k=m}^{n} a_k\right) \cdot \left(\prod_{k=m}^{n} b_k\right) = \left(\prod_{k=m}^{n} (k+1)\right) \cdot \left(\prod_{k=m}^{n} (k-1)\right)$$
 by substitution

$$= \prod_{k=m}^{n} (k+1) \cdot (k-1)$$
 by Theorem 5.1.1 (3)

$$= \prod_{k=m}^{n} (k^2 - 1)$$
 by algebraic
simplification

Change of Variable

Example: Transform $\sum_{k=1}^{n} k^{n}$ by making the change of variable j = k - 1.

When k = 1, then j = 1 - 1 = 0

When k = n, then j = n - 1

$$j = k - 1 \implies k = j + 1$$
 Thus $k^n = (j + 1)^n$
So: $\sum_{k=1}^n k^n = \sum_{j=0}^{n-1} (j+1)^n$

Exercises

Transform the following summation by making the specified change of variable.

$$\sum_{k=0}^{o} \frac{1}{k+1}$$
 Change variable $j = k+1$ For (k=0; k<=6; k++)
Sum = Sum + 1/(k+1)

$$\sum_{j=1}^{7} \frac{1}{j} = \sum_{k=1}^{7} \frac{1}{k}.$$

 $\sum_{k=0}^{6} \frac{1}{k+1} = \sum_{k=1}^{7} \frac{1}{k}$

For (k=1; k<=7; k++) Sum = Sum + 1/(k)

Exercises

Transform the following summation by making the specified change of variable.

n+1 $\sum_{n+k} \frac{k}{n+k}$ Change of variable: j = k - 1 $\sum_{i=0}^{n} \frac{j+1}{n+(j+1)} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$ $\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$

For (k=1; k<=n+1; k++) Sum = Sum + k/(n+k)

For (k=0; k<=n; k++) Sum = Sum + (k+1)/(n+k+1)

Sequences in Computer Programming

What is the difference

 1. for i := 1 to n 2. for j := 0 to n - 1 3. for k := 2 to n + 1

 print a[i] print a[j + 1] print a[k - 1]

 next i next j next k

Computing the sum

s := a[1]	s := 0
for $k := 2$ to n	for $k := 1$ to n
s := s + a[k]	s := s + a[k]
next k	next k

$$\sum_{k=1}^{n+1} \frac{k}{n+k} = \sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$$

Sum=0 For (k=0; k<=n; k++) Sum = Sum + (k+1)/(n+k+1)

Factorial !

• Definition

For each positive integer *n*, the quantity *n* factorial denoted *n*!, is defined to be the product of all the integers from 1 to *n*:

$$n! = n \cdot (n-1) \cdots 3 \cdot 2 \cdot 1.$$

Zero factorial, denoted 0!, is defined to be 1:

0! = 1.

Example 5.1.16 Computing with Factorials

Simplify the following expressions:

a.
$$\frac{8!}{7!}$$
 b. $\frac{5!}{2! \cdot 3!}$ c. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!}$ d. $\frac{(n+1)!}{n!}$ e. $\frac{n!}{(n-3)!}$

Solution

a.
$$\frac{8!}{7!} = \frac{8 \cdot 7!}{7!} = 8$$

b. $\frac{5!}{2! \cdot 3!} = \frac{5 \cdot 4 \cdot 3!}{2! \cdot 3!} = \frac{5 \cdot 4}{2 \cdot 1} = 10$
c. $\frac{1}{2! \cdot 4!} + \frac{1}{3! \cdot 3!} = \frac{1}{2! \cdot 4!} \cdot \frac{3}{3} + \frac{1}{3! \cdot 3!} \cdot \frac{4}{4}$ by multiplying each numerator and denominator by just what is necessary to obtain a common denominator
 $= \frac{3}{3 \cdot 2! \cdot 4!} + \frac{4}{3! \cdot 4 \cdot 3!}$ by rearranging factors
 $= \frac{3}{3! \cdot 4!} + \frac{4}{3! \cdot 4!}$ because $3 \cdot 2! = 3!$ and $4 \cdot 3! = 4!$
 $= \frac{7}{3! \cdot 4!}$ by the rule for adding fractions with a common denominator
 $= \frac{7}{144}$
d. $\frac{(n+1)!}{n!} = \frac{(n+1) \cdot n!}{n!} = n+1$
e. $\frac{n!}{(n-3)!} = \frac{n \cdot (n-1) \cdot (n-2) \cdot (n-3)!}{(n-3)!} = n \cdot (n-1) \cdot (n-2)$
 $= n^3 - 3n^2 + 2n$

© Susanna S. Epp, Ken

_

n choose r

Observe that the definition implies that $\binom{n}{r}$ will always be an integer because it is a number of subsets. In Section 9.5 we will explore many uses of *n* choose *r* for solving problems involving counting, and we will prove the following computational formula:

• Formula for Computing $\binom{n}{r}$ For all integers *n* and *r* with $0 \le r \le n$, $\binom{n}{r} = \frac{n!}{r!(n-r)!}$.

Example 5.1.17 Computing $\binom{n}{r}$ by Hand

Use the formula for computing $\binom{n}{r}$ to evaluate the following expressions:

a.
$$\binom{8}{5}$$
 b. $\binom{4}{0}$ c. $\binom{n+1}{n}$

Solution

a.
$$\binom{8}{5} = \frac{8!}{5!(8-5)!}$$

 $= \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot (\cdot 3 \cdot 2 \cdot 1)}$ always cancel common factors
before multiplying
 $= 56.$
b. $\binom{4}{4} = \frac{4!}{4!(4-4)!} = \frac{4!}{4!0!} = \frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(1)} = 1$

The fact that 0! = 1 makes this formula computable. It gives the correct value because a set of size 4 has exactly one subset of size 4, namely itself.

= 1

c.
$$\binom{n+1}{n} = \frac{(n+1)!}{n!((n+1)-n)!} = \frac{(n+1)!}{n!1!} = \frac{(n+1)\cdot n!}{n!} = n+1$$

Mathematical Induction

Mathematical Induction: A Way to Prove Such Formulas and Other Things

Given an integer variable n, we can consider a variety of properties P(n) that might be true or false for various values of n. For instance, we could consider

P(n):
$$1 + 3 + 5 + 7 + \dots + (2n - 1) = n^2$$

- P(*n*): $4^n 1$ is divisible by 3
- P(*n*): *n* cents can be obtained using 3° and 5° coins.

A proof by mathematical induction: shows that a given property P(n) is true for all integers greater than or equal to some initial integer.

Principle of Mathematical Induction

Let P(n) be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. P(a) is true.

2. For all integers $k \ge a$, if P(k) is true then P(k + 1) is true.

Then the statement

```
for all integers n \ge a, P(n)
```

is true.

Outline of Proof by Mathematical Induction

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers n ≥ a, a property P(n) is true."
To prove such a statement, perform the following two steps:
Step 1 (basis step): Show that P(a) is true.
Step 2 (inductive step): Show that for all integers k ≥ a, if P(k) is true then P(k + 1) is true. To perform this step,

suppose that P(k) is true, where k is any particular but arbitrarily chosen integer with $k \ge a$. [This supposition is called the inductive hypothesis.]

Then

show that P(k+1) is true.

Mathematical Induction: Example

Example: Prove that for all integers $n \ge 1$,

 $1 + 3 + 5 + 7 + \cdots + (2n-1) = n^2$.

Proof: Let the property P(n) be the equation

 $1+3+5+7+\cdots+(2n-1)=n^2$ \leftarrow The property P(n)

<u>Show that the property is true for n = 1:</u> Basis Step

When n = 1, the property is the equation $1 = 1^2$. But the left-hand side (LHS) of this equation is 1, and the right-hand side (RHS) is 1^2 , which equals 1 also. So the property is true for n = 1. Inductive Step for the proof that for all integers $n \ge 1$, $1 + 3 + 5 + 7 + \cdots + (2n - 1) = n^2$.

- Show that \forall integers $k \ge 1$, if p(k) is true then it is true for p(k)**k+1)**:
- Let k be any integer with $k \ge 1$, and suppose that the property is true for n = k. In other words, **suppose** that
- $1 + 3 + 5 + 7 + \cdots + (2k 1) = k^2$. | Inductive Hypothesis

- We must show that the property is true for n = k + 1.
- $P(k+1) = (k+1)^2$
- or, equivalently, we must **show** that
- $1 + 3 + 5 + 7 + \cdots + (2(k + 1) 1) = (k + 1)^2$.

Inductive hypothesis: $1 + 3 + 5 + 7 + \dots + (2k - 1) = k^2$. Show: $1 + 3 + 5 + 7 + \dots + (2k + 1) = (k + 1)^2$.

But the LHS of the equation to be shown is

 $1 + 3 + 5 + 7 + \cdots + (2(k + 1)-1)$

 $= 1 + 3 + 5 + 7 + \dots + (2k - 1) + (2(k + 1) - 1)$

by making the next-to-last-term explicit

- $= k^{2} + (2k + 1)$ by substitution from the inductive hypothesis
- $= (k+1)^2 \qquad by algebra,$

which equals the RHS of the equation to be shown.

So, the property is true for n = k+1. Therefore the property P(n) is true.

Proving sum of integers and geometric sequence

Formula for the sum of the first *n* integers: For all integers $n \ge 1$,

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Formula for the sum of the terms of a geometric sequence: For all real numbers $r \neq 1$ and all integers $n \ge 0$,

$$1 + r + r^{2} + r^{3} + \cdots + r^{n} = \frac{r^{n+1} - 1}{r - 1}.$$

Example

Theorem 5.2.2 Sum of the First *n* Integers

For all integers $n \ge 1$,

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}.$$

Proof (by mathematical induction):

Let the property P(n) be the equation

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}. \quad \leftarrow P(n)$$

Show that P(1) is true:

To establish P(1), we must show that

$$1 = \frac{1(1+1)}{2} \qquad \leftarrow \quad P(1)$$

But the left-hand side of this equation is 1 and the right-hand side is

$$\frac{1(1+1)}{2} = \frac{2}{2} = 1$$

also. Hence P(1) is true.

Show that for all integers $k \ge 1$, if P(k) is true then P(k + 1) is also true: [Suppose that P(k) is true for a particular but arbitrarily chosen integer $k \ge 1$. That is:] Suppose that k is any integer with $k \ge 1$ such that

$$1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$$
 $\leftarrow P(k)$
inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

$$1 + 2 + 3 + \dots + (k + 1) = \frac{(k + 1)[(k + 1) + 1]}{2},$$

or, equivalently, that

$$1 + 2 + 3 + \dots + (k+1) = \frac{(k+1)(k+2)}{2}. \quad \leftarrow P(k+1)$$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

Exercises

The left-hand side of P(k + 1) is $1 + 2 + 3 + \dots + (k + 1)$ by making the next-to-last $= 1 + 2 + 3 + \dots + k + (k + 1)$ term explicit $=\frac{k(k+1)}{2} + (k+1)$ by substitution from the inductive hypothesis $=\frac{k(k+1)}{2}+\frac{2(k+1)}{2}$ $=\frac{k^2+k}{2}+\frac{2k+2}{2}$ $=\frac{k^2+3k+1}{2}$ by algebra. And the right-hand side of P(k + 1) is

$$\frac{(k+1)(k+2)}{2} = \frac{k^2 + 3k + 1}{2}.$$

Thus the two sides of P(k + 1) are equal to the same quantity and so they are equal to each other. Therefore the equation P(k + 1) is true [as was to be shown]. [Since we have proved both the basis step and the inductive step, we conclude that the theorem is true.]

Definition Closed Form

If a sum with a variable number of terms is shown to be equal to a formula that does not contain either an ellipsis or a summation symbol, we say that it is written **in closed form**.

- a. Evaluate $2 + 4 + 6 + \dots + 500$.
- b. Evaluate $5 + 6 + 7 + 8 + \dots + 50$.
- c. For an integer $h \ge 2$, write $1 + 2 + 3 + \cdots + (h 1)$ in closed form.

Solution

a.
$$2+4+6+\dots+500 = 2 \cdot (1+2+3+\dots+250)$$

 $= 2 \cdot \left(\frac{250 \cdot 251}{2}\right)$ by applying the formula for the sum of the first *n* integers with $n = 250$
 $= 62,750.$
b. $5+6+7+8+\dots+50 = (1+2+3+\dots+50) - (1+2+3+4)$
 $= \frac{50 \cdot 51}{2} - 10$ by applying the formula for the sum of the first *n* integers with $n = 50$
 $= 1,265$
c. $1+2+3+\dots+(h-1) = \frac{(h-1) \cdot [(h-1)+1]}{2}$ by applying the formula for the sum of the first *n* integers with $n = h-1$
 $= \frac{(h-1) \cdot h}{2}$ since $(h-1)+1 = h.$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

Proving Sum of Geometric Sequences

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.$$

$$\sum_{i=0}^{0} r^{i} = \frac{r^{0+1}-1}{r-1} \quad \leftarrow P(0) = \frac{r-1}{r-1} = 1$$
$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1}-1}{r-1} \quad \leftarrow P(k)$$
inductive hypothesis

$$\sum_{i=0}^{k+1} r^{i} = \frac{r^{k+2} - 1}{r - 1}, \quad \leftarrow P(k+1)$$

$$= \sum_{i=0}^{k} r^{i} + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}$$

$$= \frac{(r^{k+1} - 1) + r^{k+1}(r - 1)}{r - 1}$$

$$= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1}$$

$$= \frac{r^{k+2} - 1}{r - 1}$$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number *r* except 1, and any integer $n \ge 0$,

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1} - 1}{r - 1}.$$

Proof (by mathematical induction):

Suppose *r* is a particular but arbitrarily chosen real number that is not equal to 1, and let the property P(n) be the equation

$$\sum_{i=0}^{n} r^{i} = \frac{r^{i+1} - 1}{r - 1} \quad \leftarrow P(n)$$

We must show that P(n) is true for all integers $n \ge 0$. We do this by mathematical induction on n.

Show that *P*(0) is true:

To establish P(0), we must show that

$$\sum_{i=0}^{0} r^{i} = \frac{r^{0+1} - 1}{r - 1} \quad \leftarrow P(0)$$

The left-hand side of this equation is $r^0 = 1$ and the right-hand side is

$$\frac{r^{0+1}-1}{r-1} = \frac{r-1}{r-1} = 1$$

© Susanni also because $r^1 = r$ and $r \neq 1$. Hence P(0) is true.

40

Show that for all integers $k \ge 0$, if P(k) is true then P(k + 1) is also true: [Suppose that P(k) is true for a particular but arbitrarily chosen integer $k \ge 0$. That is:] Let k be any integer with $k \ge 0$, and suppose that

$$\sum_{i=0}^{k} r^{i} = \frac{r^{k+1} - 1}{r - 1} \quad \leftarrow P(k)$$

inductive hypothesis

[We must show that P(k + 1) is true. That is:] We must show that

$$\sum_{i=0}^{k+1} r^i = \frac{r^{(k+1)+1} - 1}{r-1},$$

or, equivalently, that

$$\sum_{i=0}^{k+1} r^i = \frac{r^{k+2} - 1}{r-1}. \quad \leftarrow P(k+1)$$

[We will show that the left-hand side of P(k + 1) equals the right-hand side.] The left-hand side of P(k + 1) is

$$\sum_{i=0}^{k+1} r^{i} = \sum_{i=0}^{k} r^{i} + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + r^{k+1}$$

$$= \frac{r^{k+1} - 1}{r - 1} + \frac{r^{k+1}(r - 1)}{r - 1}$$

$$= \frac{(r^{k+1} - 1) + r^{k+1}(r - 1)}{r - 1}$$
by
$$= \frac{r^{k+1} - 1 + r^{k+2} - r^{k+1}}{r - 1}$$
by
$$= \frac{r^{k+2} - 1}{r - 1}$$
by

y writing the (k + 1)st term eparately from the first *k* terms

by substitution from the inductive hypothesis

by multiplying the numerator and denominator of the second term by (r - 1) to obtain a common denominator

by adding fractions

by multiplying out and using the fact that $r^{k+1} \cdot r = r^{k+1} \cdot r^1 = r^{k+2}$

by canceling the r^{k+1} 's.

which is the right-hand side of P(k + 1) [as was to be shown.] [Since we have proved the basis step and the inductive step, we conclude that the theorem is true.]

© Susan

a. $1 + 3 + 3^2 + \cdots + 3^{m-2} = 3^{(m-2)+1} - 1/3 - 1$ by applying the formula for the sum of a geometric sequence with r = 3and

$$n = m - 2$$

= $\frac{3^{m-1} - 1}{2}$

b.

 $3^2 + 3^3 + 3^4 + \cdots + 3^m = 3^2 \cdot (1 + 3 + 3^2 + \cdots + 3^{m-2})$ by factoring out 3^2

$$= 9 \times \frac{3^{m-1}-1}{2}$$
 by part (a).

Mathematics in Programming

Example : Finding the sum of a integers

Same Question: Prove that these programs prints the same results in case $n \ge 1$ For (i=1, i \le n; i++) S=S+i; Print ("%d", S); Section State St

Mathematics in Programming

Example : Finding the sum of a geometric series

Prove that these codes will return the same output.

```
int n, r, sum=0;
int i;
scanf("%d",&n);
scanf("%d",&r);
```

```
if(r != 1) {
   for(i=0 ; i<=n ; i++) {
      sum = sum + pow(r,i);
   }
   printf("%d\n", sum);
}</pre>
```

int n, r, sum=0; scanf("%d",&n); scanf("%d",&r);

```
if(r != 1) {
    sum=((pow(r,n+1))-1)/(r-1);
    printf("%d\n", sum);
}
```


Mathematical Induction II Proving Divisibility

Mathematics in Programming Proving Divisibility Property

What will the output of this program be for any input n?

Proving a Divisibility Property

For all integers $n \ge 0$, $2^{2n} - 1$ is divisible by 3.

 $3 \mid 2^{2n} - 1 \qquad \leftarrow P(n)$

Basis Step: Show that P(0) is true. P(0): $2^{2.0} - 1 = 2^0 - 1 = 1 - 1 = 0$ as $3 \mid 0$, thus P(0) is true.

Inductive Step: Show that for all integers $k \ge 0$, if P(k) is true then P(k + 1) is also true:

Suppose: $2^{2k} - 1$ is divisible by 3. $2^{2k} - 1 = 3r$ for some integer *r*. We want to prove $2^{2(k+1)} - 1$ is divisible by 3. $2^{2(k+1)} - 1 = 2^{2k+2} - 1$ by the laws of exponents

 $= 2^{2k} \cdot 2^{2} - 1 = 2^{2k} \cdot 4 - 1$ = $2^{2k}(3+1) - 1 = 2^{2k} \cdot 3 + (2^{2k}-1) = 2^{2k} \cdot 3 + 3r$ = $3(2^{2k} + r)$ Which is integer so, by definition of divisibility, $2^{2(k+1)} - 1$ is divisible by 3 Outline a proof by math induction for the statement: For all integers $n \ge 0$, $5^n - 1$ is divisible by 4.

Proof by mathematical induction: Let the property P(n) be the sentence 5''-1 is divisible by 4. \leftarrow *the property P(n)* Show that the property is true for n = 0: We must show that $5^{\circ} - 1$ is divisible by 4. But $5^{\mathbf{0}} - 1 = 1 - 1 = 0$, and 0 is divisible by 4 because $0 = 4 \cdot 0$. Show that for all integers $k \ge 0$, if the property is true for n = k, then it is true for n = k + 1: Let *k* be an integer with $k \ge 0$, and **suppose** that [the property is true for n = k. $5^{k} - 1$ is divisible by 4. \leftarrow *inductive hypothesis*

We must **show** that P(k + 1) is true.

 $5^{k+1} - 1$ is divisible by 4.

Scratch Work for proving that For all integers $n \ge 0$, $5^n - 1$ is divisible by 4.

$$5^{k+1} - 1 = 5^{k} \cdot 5 - 1$$

= $5^{k} \cdot (4 + 1) - 1$
= $5^{k} \cdot 4 + 5^{k} \cdot 1 - 1$
= $5^{k} \cdot 4 + (5^{k} - 1)$

Note: Each of these terms is divisible by 4.

So:
$$5^{k+1} - 1 = 5^k \cdot 4 + 4 \cdot r$$
 (where r is an integer)
= $4 \cdot (5^k + r)$

 $(5^{k} + r)$ is an integer because it is a sum of products of integers, and so, by definition of divisibility $5^{k+1} - 1$ is divisible by 4.

Proving Inequality

For all integers $n \ge 3$, $2n + 1 < 2^n$

Let P(n) be $2n+1<2^n$

Basis Step: Show that P(3) is true. P(3): $2.3+1 < 2^3$ which is true.

Inductive Step: Show that for all integers $k \ge 3$, if P(k) is true then P(k + 1) is also true:

Suppose: $2k + 1 < 2^k$ is true $\leftarrow P(k)$ inductive hypothesis

 $2(k+1) + 1 < 2^{k+1} \leftarrow P(k+1)$

2k+3 = (2k+1) + 2 by algebra

< $2^k + 2^k$ as $2k + 1 < 2^k$ by the hypothesis and because $2 < 2^k$ ($k \ge 2$)

 $\therefore 2k + 3 < 2 \cdot 2^{k} = 2^{k+1}$ [This is what we needed to show.]

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

For each positive integer n, let P(n) be the property

 $2^n < (n+1)!.$

Define a sequence $a_1, a_2, a_3 \dots$ as follows:

 $a_1 = 2$ $a_k = 5a_{k-1}$ for all integers $k \ge 2$.

$$a_1 = 2$$

 $a_2 = 5a_{2-1} = 5a_1 = 5 \cdot 2 = 10$
 $a_3 = 5a_{3-1} = 5a_2 = 5 \cdot 10 = 50$
 $a_4 = 5a_{4-1} = 5a_3 = 5 \cdot 50 = 250$

Property \rightarrow The terms of the sequence satisfy the equation $a_n = 2 \cdot 5^{n-1}$

Proving a Property of a Sequence

Prove this property: $a_n = 2 \cdot 5^{n-1}$ for all integers $n \ge 1$

Basis Step: Show that P(1) is true. $a_1 = 2 \cdot 5^{1-1} = 2 \cdot 5^0 = 2$

Inductive Step: Show that for all integers $k \ge 1$, if P(k) is true then P(k + 1)is also true: Suppose: $a_k = 2 \cdot 5^{k-1}$ $\leftarrow P(k)$ inductive hypothesis $a_{k+1} = 2 \cdot 5^k$ $\leftarrow P(k+1)$ $= 5a_{(k+1)-1}$ by definition of $a_1, a_2, a_3 \dots$ $= 5a_k$ $= 5 \cdot (2 \cdot 5^{k-1})$ by the hypothesis $= 2 \cdot (5 \cdot 5^{k-1})$ $= 2 \cdot 5^k$

[This is what we needed to show.]

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, and Nariman TM Ammar 2005-2016, All rights reserved

Important Formulas

Formula for the sum of the first *n* integers: For all integers $n \ge 1$,

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Formula for the sum of the terms of a geometric sequence: For all real numbers $r \neq 1$ and all integers $n \ge 0$,

$$1 + r + r^{2} + r^{3} + \cdots + r^{n} = \frac{r^{n+1} - 1}{r - 1}.$$

Exercises

a. $1 + 2 + 3 + \cdots + 100 = \frac{100(100 + 1)}{2} = 50(101) = 5050$ **b.** $1 + 2 + 3 + \cdots + k = \frac{k(k+1)}{2}$ c. $1+2+3+\cdots+(k-1)=\frac{(k-1)((k-1)+1)}{2}=\frac{(k-1)k}{2}$ **d**. $4 + 5 + 6 + \cdots + (k - 1) = (1 + 2 + 3 + \cdots + (k - 1)) - (1 + 2 + 3)$ $= \frac{k(k-1)}{2} - (1+2+3) = \frac{k(k-1)}{2} - 6$ **e.** $3 + 3^2 + 3^3 + \cdots + 3^k = (1 + 3 + 3^2 + 3^3 + \cdots + 3^k) - 1 = \frac{3^{k+1} - 1}{2} - 1$ $=\frac{3^{k+1}-1}{2}-1=\frac{3^{k+1}-1}{2}-\frac{2}{2}=\frac{3^{k+1}-3}{2}$ **f**. $3 + 3^2 + 3^3 + \cdots + 3^k = 3(1 + 3 + 3^2 + \cdots + 3^{k-1})$ $= 3\left(\frac{3^{(k-1)+1}-1}{3-1}\right) = \frac{3(3^{k}-1)}{2}$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved