COMP 233 Discrete Mathematics

Chapter 5

Sequences and Mathematical Induction

Outline

- Sequences:
- Explicit Formulas;
- Summation Notation;
- Sequences in Computer Programming;
- Proof by Mathematical Induction (I and II)
- Proving sum of integers and geometric sequences
- Proving a Divisibility Property and Inequality
- Proving a Property of a Sequence

Sequences

Idea: Think of a sequence as a set of elements written in a row:

$$
\begin{array}{ll}
a_{1}, a_{2}, a_{3}, \ldots, a_{n} & \text { finite sequence } \\
a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots & \text { infinite sequence }
\end{array}
$$

Each individual element a_{k} is called a term.
The k in a_{k} is called a subscript or index

Observe patterns

Determine the number of points in the $4^{\text {th }}$ and $5^{\text {th }}$ figure

Determine the next 2 terms of the sequence

$$
4,8,16,32,64
$$

Induce the formula that could be used to determine any term in the sequence

Finding Terms of Sequences Given by Explicit Formulas

Define sequences $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{2}, b_{3}, b_{4}, \ldots$ by the following explicit formulas:

$$
\begin{aligned}
& a_{k}=\frac{k}{k+1} \text { for some integers } k \geq 1 \\
& b_{i}=\frac{i-1}{i} \text { for some integers } i \geq 2
\end{aligned}
$$

Compute the first five terms of both sequences.

Compute the first six terms of the sequence $c_{0}, c_{1}, c_{2}, \ldots$ defined as follows: $c_{j}=(-1)^{j}$ for all integers $j \geq 0$.

Finding Explicit Formula to Fit Given Initial Terms

Find an explicit formula for a sequence that has the following initial terms:

$$
\begin{aligned}
& 1,-\frac{1}{4}, \frac{1}{9},-\frac{1}{16}, \frac{1}{25},-\frac{1}{36}, \ldots \cdots \cdot \\
& a_{k}=\frac{-1^{k+1}}{k^{2}} \quad \text { for all integers } k \geq 1 . \\
& \text { OR } \\
& a_{k}=\frac{-1^{k}}{(k+1)^{2}} \quad \text { for all integers } k \geq 0 .
\end{aligned}
$$

Exercises

Example: Find an explicit formula for a sequence that has the following initial terms:

$$
\frac{1}{3},-\frac{2}{4}, \frac{3}{5},-\frac{4}{6}, \frac{5}{7},-\frac{6}{8}, \ldots
$$

Solutions: The sequence satisfies the formulas for all integers $n \geq 0, \quad a_{n}=(-1)^{n} \frac{n+1}{n+3}$
for all integers $n \geq 1$,

$$
a_{n}=(-1)^{n-1} \frac{n}{n+2}
$$

Summation Notation

Suppose $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are real numbers. The "summation from i equals 1 to n of asub- i " is

$$
\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}
$$

- Definition

If m and n are integers and $m \leq n$, the symbol $\sum_{k=m}^{n} a_{k}$, read the summation from \boldsymbol{k} equals \boldsymbol{m} to \boldsymbol{n} of \boldsymbol{a}-sub- \boldsymbol{k}, is the sum of all the terms $a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$. We say that $a_{m}+a_{m+1}+a_{m+2}+\ldots+a_{n}$ is the expanded form of the sum, and we write

$$
\sum_{k=m}^{n} a_{k}=a_{m}+a_{m+1}+a_{m+2}+\cdots+a_{n}
$$

We call k the index of the summation, m the lower limit of the summation, and n the upper limit of the summation.

EMEMCISES

Ex: Use summation notation to write the following sum:

$$
\frac{1}{3}-\frac{2}{4}+\frac{3}{5}-\frac{4}{6}+\frac{5}{7}-\frac{6}{8}
$$

Solution: By the example on the previous slide, we can write:
or:

$$
\frac{1}{3}-\frac{2}{4}+\frac{3}{5}-\frac{4}{6}+\frac{5}{7}-\frac{6}{8}=\sum_{n=0}^{5}(-1)^{n}\left(\frac{n+1}{n+3}\right)
$$

$$
\frac{1}{3}-\frac{2}{4}+\frac{3}{5}-\frac{4}{6}+\frac{5}{7}-\frac{6}{8}=\sum_{n=1}^{6}(-1)^{n+1}\left(\frac{n}{n+2}\right)
$$

Exercises

Let $a_{1}=-2, a_{2}=-1, a_{3}=0, a_{4}=1$, and $a_{5}=2$. Compute the following:

Example 5.1.4 Computing Summations
Let $a_{1}=-2, a_{2}=-1, a_{3}=0, a_{4}=1$, and $a_{5}=2$. Compute the following:
a. $\sum_{k=1}^{5} a_{k}$
b. $\sum_{k=2}^{2} a_{k}$
c. $\sum_{k=1}^{2} a_{2 k}$

Solution
a. $\sum_{k=1}^{5} a_{k}=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}=(-2)+(-1)+0+1+2=0$
b. $\sum_{k=2}^{2} a_{k}=a_{2}=-1$
c. $\sum_{k=1}^{2} a_{2 k}=a_{2 \cdot 1}+a_{2 \cdot 2}=a_{2}+a_{4}=-1+1=0$

Summation to Expanded Form

Write the following summation in expanded form:

$$
\begin{aligned}
& \sum_{i=0}^{n} \frac{(-1)^{i}}{i+1} \\
& \sum_{i=0}^{n} \frac{(-1)^{i}}{i+1}=\frac{(-1)^{0}}{0+1}+\frac{(-1)^{1}}{1+1}+\frac{(-1)^{2}}{2+1}+\frac{(-1)^{3}}{3+1}+\cdots+\frac{(-1)^{n}}{n+1} \\
& \\
& =\frac{1}{1}+\frac{(-1)}{2}+\frac{1}{3}+\frac{(-1)}{4}+\cdots+\frac{(-1)^{n}}{n+1} \\
& \\
& =1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{(-1)^{n}}{n+1}
\end{aligned}
$$

Expanded Form to Summation

Express the following using summation notation:

$$
\begin{gathered}
\frac{\mathbf{1}}{\boldsymbol{n}}+\frac{\mathbf{2}}{\boldsymbol{n}+\mathbf{1}}+\frac{\mathbf{3}}{\boldsymbol{n}+\mathbf{2}}+\cdots+\frac{\boldsymbol{n}+\mathbf{1}}{\mathbf{2 n}} \\
\frac{1}{n}+\frac{2}{n+1}+\frac{3}{n+2}+\cdots+\frac{n+1}{2 n}=\sum_{k=0}^{n} \frac{k+1}{n+k} .
\end{gathered}
$$

Separating Off a Final Term and Adding On

 a Final Term n

by separating off the final term.

Write $\sum_{k=0}^{n} 2^{k}+2^{\mathrm{n}+1} \quad$ as a single summation.

$$
\sum_{k=0}^{n} 2^{k}+2^{n+1}=\sum_{k=0}^{n+1} 2^{k}
$$

Telescoping Sum

$$
\begin{aligned}
& \sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right) \\
= & \left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{B}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots+\left(\frac{1}{n-1}-\frac{1}{n}\right)+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
= & 1-\frac{1}{n+1} .
\end{aligned}
$$

Product Notation

- Definition

If m and n are integers and $m \leq n$, the symbol $\prod_{k=m}^{n} a_{k}$, read the product from k equals \boldsymbol{m} to \boldsymbol{n} of \boldsymbol{a}-sub- \boldsymbol{k}, is the product of all the terms $a_{m}, a_{m+1}, a_{m+2}, \ldots, a_{n}$. We write

$$
\prod_{k=m}^{n} a_{k}=a_{m} \cdot a_{m+1} \cdot a_{m+2} \cdot \cdots a_{n}
$$

A recursive definition for the product notation is the following: If m is any integer, then

$$
\prod_{k=m}^{m} a_{k}=a_{m} \quad \text { and } \quad \prod_{k=m}^{n} a_{k}=\left(\prod_{k=m}^{n-1} a_{k}\right) \cdot a_{n} \quad \text { for all integers } n>m
$$

Computing Products

- Compute the following products:

. $=1 * 2 * 3 * 4 * 5=120$

- = $1 / 2$

Properties of Summations

Theorem 5.1.1

If $a_{m}, a_{m+1}, a_{m+2}, \ldots$ and $b_{m}, b_{m+1}, b_{m+2}, \ldots$ are sequences of real numbers and c is any real number, then the following equations hold for any integer $n \geq m$:

1. $\sum_{k=m}^{n} a_{k}+\sum_{k=m}^{n} b_{k}=\sum_{k=m}^{n}\left(a_{k}+b_{k}\right)$
2. $c \cdot \sum_{k=m}^{n} a_{k}=\sum_{k=m}^{n} c \cdot a_{k} \quad$ generalized distributive law
3. $\left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right)=\prod_{k=m}^{n}\left(a_{k} \cdot b_{k}\right)$.

Let $a_{k}=k+1$ and $b_{k}=k-1$ for all integers k. Write each of the following expressions as a single summation or product:
a. $\sum_{k=m}^{n} a_{k}+2 \cdot \sum_{k=m}^{n} b_{k}$
b. $\left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right)$

Solution

a. $\sum_{k=m}^{n} a_{k}+2 \cdot \sum_{k=m}^{n} b_{k}=\sum_{k=m}^{n}(k+1)+2 \cdot \sum_{k=m}^{n}(k-1) \quad$ by substitution

$$
=\sum_{k=m}^{n}(k+1)+\sum_{k=m}^{n} 2 \cdot(k-1) \quad \text { by Theorem 5.1.1 (2) }
$$

$$
=\sum_{k=m}^{n}((k+1)+2 \cdot(k-1)) \quad \text { by Theorem 5.1.1 (1) }
$$

$$
=\sum_{k=m}^{n}(3 k-1) \quad \begin{aligned}
& \text { by algebraic } \\
& \text { simplification }
\end{aligned}
$$

$$
\text { b. } \begin{array}{rlrl}
\left(\prod_{k=m}^{n} a_{k}\right) \cdot\left(\prod_{k=m}^{n} b_{k}\right) & =\left(\prod_{k=m}^{n}(k+1)\right) \cdot\left(\prod_{k=m}^{n}(k-1)\right) & & \text { by substitution } \\
& =\prod_{k=m}^{n}(k+1) \cdot(k-1) & & \text { by Theorem 5.1.1 (3) } \\
& =\prod_{k=m}^{n}\left(k^{2}-1\right) & \begin{array}{l}
\text { by algebraic } \\
\text { simplification }
\end{array}
\end{array}
$$

Change of Variable

Example: Transform $\sum_{k=1}^{n} k^{n}$ by making the change of variable $j=k-1$.

When $k=1$, then $j=1-1=0$
When $k=n$, then $j=n-1$
$j=k-1 \Rightarrow k=j+1$ Thus $k^{n}=(j+1)^{n}$
So: $\sum_{k=1}^{n} k^{n}=\sum_{j=0}^{n-1}(j+1)^{n}$

Exercises

Transform the following summation by making the specified change of variable.

$$
\begin{aligned}
& \sum_{k=0}^{6} \frac{1}{\boldsymbol{k}+\boldsymbol{1}} \quad \text { Change variable } j=k+1 \\
& \sum_{j=1}^{7} \frac{1}{j}=\sum_{k=1}^{7} \frac{1}{k} \\
& \sum_{k=0}^{6} \frac{1}{k+1}=\sum_{k=1}^{7} \frac{1}{k}
\end{aligned}
$$

$$
\text { For }(k=0 ; k<=6 ; k++)
$$

$$
\operatorname{Sum}=\operatorname{Sum}+1 /(k+1)
$$

For $(k=1 ; k<=7 ; k++)$
Sum $=$ Sum $+1 /(k)$

Exercises

Transform the following summation by making the specified change of variable.

Change of variable: $j=k-1$
$\sum_{j=0}^{n} \frac{j+1}{n+(j+1)}=\sum_{k=0}^{n} \frac{k+1}{n+(k+1)}$

$$
\sum_{k=1}^{n+1} \frac{k}{n+k}=\sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
$$

For $(\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n}+1 ; \mathrm{k}++$) Sum $=$ Sum $+\mathrm{k} /(\mathrm{n}+\mathrm{k})$

For $(k=0 ; k<=n ; k++)$
Sum $=$ Sum $+(k+1) /(n+k+1)$

Sequences in Computer Programming

- What is the difference

1. for $i:=1$ to n
print $a[i]$
next i
2. for $j:=0$ to $n-1$
print $a[j+1]$
next j
3. for $k:=2$ to $n+1$ print $a[k-1]$ next k

- Computing the sum

$$
\begin{aligned}
& s:=a[1] \\
& \text { for } k:=2 \text { to } n \\
& \quad s:=s+a[k] \\
& \text { next } k
\end{aligned}
$$

$$
s:=0
$$

$$
\text { for } k:=1 \text { to } n
$$

$$
s:=s+a[k]
$$

$$
\text { next } k
$$

$$
\sum_{k=1}^{n+1} \frac{k}{n+k}=\sum_{k=0}^{n} \frac{k+1}{n+(k+1)}
$$

```
Sum=0
For (k=0; k<=n; k++)
Sum = Sum + (k+1)/(n+k+1)
```


Factorial!

- Definition

For each positive integer \boldsymbol{n}, the quantity \boldsymbol{n} factorial denoted $\boldsymbol{n}!$, is defined to be the product of all the integers from 1 to n :

$$
n!=n \cdot(n-1) \cdots 3 \cdot 2 \cdot 1
$$

Zero factorial, denoted 0 !, is defined to be 1 :

$$
0!=1
$$

Example 5.1.16 Computing with Factorials

Simplify the following expressions:
a. $\frac{8!}{7!}$
b. $\frac{5!}{2!\cdot 3!}$
c. $\frac{1}{2!\cdot 4!}+\frac{1}{3!\cdot 3!}$
d. $\frac{(n+1)!}{n!}$
e. $\frac{n!}{(n-3)!}$

Solution
a. $\frac{8!}{7!}=\frac{8 \cdot 7!}{7!}=8$
b. $\frac{5!}{2!\cdot 3!}=\frac{5 \cdot 4 \cdot 3!}{2!\cdot 3!}=\frac{5 \cdot 4}{2 \cdot 1}=10$
c. $\frac{1}{2!\cdot 4!}+\frac{1}{3!\cdot 3!}=\frac{1}{2!\cdot 4!} \cdot \frac{3}{3}+\frac{1}{3!\cdot 3!} \cdot \frac{4}{4}$
by multiplying each numerator and

$$
\begin{array}{ll}
=\frac{1}{2!\cdot 4!} \cdot \frac{3}{3}+\frac{1}{3!\cdot 3!} \cdot \frac{4}{4} & \begin{array}{l}
\text { denominator by just what is necessary to } \\
\text { obtain a common denominator }
\end{array} \\
=\frac{3}{3 \cdot 2!\cdot 4!}+\frac{4}{3!\cdot 4 \cdot 3!} & \text { by rearranging factors } \\
=\frac{3}{3!\cdot 4!}+\frac{4}{3!\cdot 4!} & \text { because } 3 \cdot 2!=3!\text { and } 4 \cdot 3!=4! \\
=\frac{7}{3!\cdot 4!} & \begin{array}{l}
\text { by the rule for adding fractions } \\
\text { with a common denominator }
\end{array} \\
=\frac{7}{144} &
\end{array}
$$

© Susanna S. Epp, Ken
d. $\frac{(n+1)!}{n!}=\frac{(n+1) \cdot n!}{n!}=n+1$
e. $\frac{n!}{(n-3)!}=\frac{n \cdot(n-1) \cdot(n-2) \cdot(n-3)!}{(n-3)!}=n \cdot(n-1) \cdot(n-2)$

$$
=n^{3}-3 n^{2}+2 n
$$

n choose r

- Definition

Let n and r be integers with $0 \leq r \leq n$. The symbol

$$
\binom{n}{r}
$$

is read " \boldsymbol{n} choose \boldsymbol{r} " and represents the number of subsets of size r that can be chosen from a set with n elements.

Observe that the definition implies that $\binom{n}{r}$ will always be an integer because it is a number of subsets. In Section 9.5 we will explore many uses of n choose r for solving problems involving counting, and we will prove the following computational formula:

- Formula for Computing ($\binom{n}{r}$

For all integers n and r with $0 \leq r \leq n$,

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

Example 5.1.17 Computing $\binom{n}{r}$ by Hand
Use the formula for computing $\binom{n}{r}$ to evaluate the following expressions:
a. $\binom{8}{5}$
b. $\binom{4}{0}$
c. $\binom{n+1}{n}$

Solution

a. $\binom{8}{5}=\frac{8!}{5!(8-5)!}$

$$
\begin{aligned}
& =\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3-2 \cdot 1}{(5 \cdot 4 \cdot 3 \cdot 2 \cdot 1) \cdot(\cdot 3-2 \cdot 1)} \\
& =56
\end{aligned}
$$

always cancel common factors before multiplying
b. $\binom{4}{4}=\frac{4!}{4!(4-4)!}=\frac{4!}{4!0!}=\frac{4 \cdot 3 \cdot 2 \cdot 1}{(4 \cdot 3 \cdot 2 \cdot 1)(1)}=1$

The fact that $0!=1$ makes this formula computable. It gives the correct value because a set of size 4 has exactly one subset of size 4 , namely itself.
c. $\binom{n+1}{n}=\frac{(n+1)!}{n!((n+1)-n)!}=\frac{(n+1)!}{n!1!}=\frac{(n+1) \cdot n!}{n!}=n+1$

5.2

Mathematical Induction

Mathematical Induction: A Way to Prove Such Formulas and Other Things

- Given an integer variable n, we can consider a variety of properties $\mathrm{P}(n)$ that might be true or false for various values of n. For instance, we could consider
$\mathrm{P}(n): 1+3+5+7+\cdots+(2 n-1)=n^{2}$
$\mathrm{P}(n): 4^{n}-1$ is divisible by 3
$\mathrm{P}(n)$: n cents can be obtained using 3ϕ and 5ϕ coins.
- A proof by mathematical induction: shows that a given property $\mathrm{P}(n)$ is true for all integers greater than or equal to some initial integer.

Principle of Mathematical Induction

Let $P(n)$ be a property that is defined for integers n, and let a be a fixed integer. Suppose the following two statements are true:

1. $P(a)$ is true.
2. For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Then the statement
is true.

$$
\text { for all integers } n \geq a, P(n)
$$

is

Outline of Proof by Mathematical Induction

Method of Proof by Mathematical Induction

Consider a statement of the form, "For all integers $n \geq a$, a property $P(n)$ is true." To prove such a statement, perform the following two steps:
Step 1 (basis step): Show that $P(a)$ is true.
Step 2 (inductive step): Show that for all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true. To perform this step,
suppose that $P(k)$ is true, where k is any particular but arbitrarily chosen integer with $k \geq a$.
[This supposition is called the inductive hypothesis.]
Then
show that $P(k+1)$ is true.

Mathematical Induction: Example

Example: Prove that for all integers $n \geq 1$,

$$
1+3+5+7+\cdots+(2 n-1)=n^{2} .
$$

Proof: Let the property $\mathrm{P}(\mathrm{n})$ be the equation
$1+3+5+7+\cdots+(2 n-1)=n^{2} \leftarrow$ The property $P(n)$
Show that the property is true for $n=1$: Basis Step When $n=1$, the property is the equation $1=1^{2}$. But the left-hand side (LHS) of this equation is 1 , and the right-hand side (RHS) is 1^{2}, which equals 1 also. So the property is true for $n=1$.

Inductive Step for the proof that for all integers $n \geq 1$, $1+3+5+7+\cdots+(2 n-1)=n^{2}$.

- Show that \forall integers $k \geq 1$, if $p(k)$ is true then it is true for $p($ k+1):
- Let k be any integer with $k \geq 1$, and suppose that the property is true for n $=k$. In other words, suppose that
$\cdot 1+3+5+7+\cdots+(2 k-1)=k^{2}$.

Inductive Hypothesis

- We must show that the property is true for $n=k+1$.
- $\mathrm{P}(\mathrm{k}+1)=(k+1)^{2}$,
- or, equivalently, we must show that
$\cdot 1+3+5+7+\cdots+(2(k+1)-1)=(k+1)^{2}$.

Inductive hypothesis: $1+3+5+7+\cdots+(2 k-1)=k^{2}$. Show: $1+3+5+7+\cdots+(2 k+1)=(k+1)^{2}$.

But the LHS of the equation to be shown is
$1+3+5+7+\cdots+(2(k+1)-1)$

$$
\begin{aligned}
& =1+3+5+7+\cdots+(2 \mathrm{k}-1)+(2(k+1)-1) \\
& =k^{2}+(2 k+1) \\
& =(k+1)^{2} \quad \begin{array}{l}
\text { by making the next-to-last-term explicit } \\
\text { bypothesitus }
\end{array} \\
& \text { by algebra, }
\end{aligned}
$$

which equals the RHS of the equation to be shown.
So, the property is true for $n=k+1$.
Therefore the property $P(n)$ is true.

Proving sum of integers and geometric sequence

Formula for the sum of the first n integers: For all integers $n \geq 1$,

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Formula for the sum of the terms of a geometric sequence: For all real numbers $r \neq 1$ and all integers $n \geq 0$,

$$
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
$$

Example

Theorem 5.2.2 Sum of the First \boldsymbol{n} Integers

For all integers $n \geq 1$,

$$
1+2+\cdots+n=\frac{n(n+1)}{2}
$$

Proof (by mathematical induction):
Let the property $P(n)$ be the equation

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2} . \quad \leftarrow P(n)
$$

Show that $\mathbf{P (1)}$ is true:
To establish $P(1)$, we must show that

$$
\begin{equation*}
1=\frac{1(1+1)}{2} \tag{1}
\end{equation*}
$$

But the left-hand side of this equation is 1 and the right-hand side is

$$
\frac{1(1+1)}{2}=\frac{2}{2}=1
$$

also. Hence $P(1)$ is true.
Show that for all integers $k \geq 1$, if $P(k)$ is true then $P(k+1)$ is also true: [Suppose that $P(k)$ is true for a particular but arbitrarily chosen integer $k \geq 1$. That is:] Suppose that k is any integer with $k \geq 1$ such that

$$
\begin{equation*}
1+2+3+\cdots+k=\frac{k(k+1)}{2} \tag{k}
\end{equation*}
$$

inductive hypothesis
[We must show that $P(k+1)$ is true. That is:] We must show that

$$
1+2+3+\cdots+(k+1)=\frac{(k+1)[(k+1)+1]}{2}
$$

or, equivalently, that

$$
1+2+3+\cdots+(k+1)=\frac{(k+1)(k+2)}{2} . \leftarrow P(k+1)
$$

© Susanna S. Epp, Kenneth H. Rosen, Mustafa Jarrar, Nariman TM Ammar and Ahmad Abusnaina 2005-2018, All rights reserved

ENEMCISES

The left-hand side of $P(k+1)$ is

$$
\begin{array}{rlrl}
1+2 & +3+\cdots+(k+1) & & \\
& =1+2+3+\cdots+k+(k+1) & \begin{array}{l}
\text { by making the next-to-last } \\
\text { term explicit }
\end{array} \\
& =\frac{k(k+1)}{2}+(k+1) & & \begin{array}{l}
\text { by substitution from the } \\
\text { inductive hypothesis }
\end{array} \\
& =\frac{k(k+1)}{2}+\frac{2(k+1)}{2} & & \\
& =\frac{k^{2}+k}{2}+\frac{2 k+2}{2} & & \\
& =\frac{k^{2}+3 k+1}{2} & & \text { by algebra. }
\end{array}
$$

And the right-hand side of $P(k+1)$ is

$$
\frac{(k+1)(k+2)}{2}=\frac{k^{2}+3 k+1}{2} .
$$

Thus the two sides of $P(k+1)$ are equal to the same quantity and so they are equal to each other. Therefore the equation $P(k+1)$ is true [as was to be shown]. [Since we have proved both the basis step and the inductive step, we conclude that the theorem is true.]

- Definition Closed Form

If a sum with a variable number of terms is shown to be equal to a formula that does not contain either an ellipsis or a summation symbol, we say that it is written in closed form.
a. Evaluate $2+4+6+\cdots+500$.
b. Evaluate $5+6+7+8+\cdots+50$.
c. For an integer $h \geq 2$, write $1+2+3+\cdots+(h-1)$ in closed form.

Solution

a. $2+4+6+\cdots+500=2 \cdot(1+2+3+\cdots+250)$

$$
\begin{array}{ll}
=2 \cdot\left(\frac{250 \cdot 251}{2}\right) & \begin{array}{l}
\text { by applying the formula for the sum } \\
\text { of the first } n \text { integers with } n=250
\end{array} \\
=62,750 . &
\end{array}
$$

b. $5+6+7+8+\cdots+50=(1+2+3+\cdots+50)-(1+2+3+4)$

$$
\begin{array}{ll}
=\frac{50 \cdot 51}{2}-10 & \begin{array}{l}
\text { by applying the formula for the sum } \\
\text { of the first } n \text { integers with } n=50
\end{array} \\
=1,265 &
\end{array}
$$

c. $1+2+3+\cdots+(h-1)=\frac{(h-1) \cdot[(h-1)+1]}{2} \quad \begin{aligned} & \text { by applying the formula for the sum } \\ & \text { of the first } n \text { integers with } \\ & n=h-1\end{aligned}$

$$
=\frac{(h-1) \cdot h}{2} \quad \text { since }(h-1)+1=h
$$

Proving Sum of Geometric Sequences

$$
\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}
$$

$$
\begin{aligned}
\sum_{i=0}^{k+1} r^{i} & =\frac{r^{k+2}-1}{r-1} \cdot \leftarrow P(k+1) \\
& =\sum_{i=0}^{k} r^{i}+r^{k+1} \\
& =\frac{r^{k+1}-1}{r-1}+r^{k+1} \\
& =\frac{r^{k+1}-1}{r-1}+\frac{r^{k+1}(r-1)}{r-1} \\
& =\frac{\left(r^{k+1}-1\right)+r^{k+1}(r-1)}{r-1} \\
& =\frac{r^{k+1}-1+r^{k+2}-r^{k+1}}{r-1} \\
& =\frac{r^{k+2}-1}{r-1}
\end{aligned}
$$

Theorem 5.2.3 Sum of a Geometric Sequence

For any real number r except 1 , and any integer $n \geq 0$,

$$
\sum_{i=0}^{n} r^{i}=\frac{r^{n+1}-1}{r-1}
$$

Proof (by mathematical induction):

Suppose r is a particular but arbitrarily chosen real number that is not equal to 1 , and let the property $P(n)$ be the equation

$$
\sum_{i=0}^{n} r^{i}=\frac{r^{i+1}-1}{r-1} \leftarrow P(n)
$$

We must show that $P(n)$ is true for all integers $n \geq 0$. We do this by mathematical induction on n.

Show that $P(0)$ is true:
To establish $P(0)$, we must show that

$$
\sum_{i=0}^{0} r^{i}=\frac{r^{0+1}-1}{r-1} \leftarrow P(0)
$$

The left-hand side of this equation is $r^{0}=1$ and the right-hand side is

$$
\frac{r^{0+1}-1}{r-1}=\frac{r-1}{r-1}=1
$$

also because $r^{1}=r$ and $r \neq 1$. Hence $P(0)$ is true.

Show that for all integers $k \geq 0$, if $P(k)$ is true then $P(k+1)$ is also true: [Suppose that $P(k)$ is true for a particular but arbitrarily chosen integer $k \geq 0$. That is:] Let k be any integer with $k \geq 0$, and suppose that

$$
\sum_{i=0}^{k} r^{i}=\frac{r^{k+1}-1}{r-1} \quad \begin{aligned}
& \text { inductive hypothesis }
\end{aligned}
$$

[We must show that $P(k+1)$ is true. That is:] We must show that

$$
\sum_{i=0}^{k+1} r^{i}=\frac{r^{(k+1)+1}-1}{r-1}
$$

or, equivalently, that

$$
\sum_{i=0}^{k+1} r^{i}=\frac{r^{k+2}-1}{r-1} \leftarrow P(k+1)
$$

[We will show that the left-hand side of $P(k+1)$ equals the right-hand side.]
The left-hand side of $P(k+1)$ is

$$
\begin{array}{rlrl}
\sum_{i=0}^{k+1} r^{i} & =\sum_{i=0}^{k} r^{i}+r^{k+1} & & \begin{array}{l}
\text { by writing the }(k+1) \text { st term } \\
\text { separately from the first } k \text { terms }
\end{array} \\
& =\frac{r^{k+1}-1}{r-1}+r^{k+1} & \begin{array}{l}
\text { by substitution from the } \\
\text { inductive hypothesis }
\end{array} \\
& =\frac{r^{k+1}-1}{r-1}+\frac{r^{k+1}(r-1)}{r-1} & \begin{array}{l}
\text { by multiplying the numerator and denominator } \\
\text { of the second term by }(r-1) \text { to obtain a } \\
\text { common denominator }
\end{array} \\
& =\frac{\left(r^{k+1}-1\right)+r^{k+1}(r-1)}{r-1} & \begin{array}{l}
\text { by adding fractions }
\end{array} \\
& =\frac{r^{k+1}-1+r^{k+2}-r^{k+1}}{r-1} & \begin{array}{l}
\text { by multiplying out and using the fact } \\
\text { that } r^{k+1} \cdot r=r^{k+1} \cdot r^{1}=r^{k+2}
\end{array} \\
& =\frac{r^{k+2}-1}{r-1} & \text { by canceling the } r^{k+1} \text { 's. }
\end{array}
$$

which is the right-hand side of $P(k+1)$ [as was to be shown.] [Since we have proved the basis step and the inductive step, we conclude that the theorem is true.]
a. $1+3+3^{2}+\cdots+3^{m-2}=3^{(m-2)+1}-1 / 3-1$
by applying the formula for the sum of a geometric sequence with $r=3$ and

$$
\begin{aligned}
& n=m-2 \\
& =\frac{3^{m-1}-1}{2}
\end{aligned}
$$

b.

$$
3^{2}+3^{3}+3^{4}+\cdots+3^{m}=3^{2} \cdot\left(1+3+3^{2}+\cdots+3^{m-2}\right)
$$

by factoring out 3^{2}
$=9 \times \frac{3^{m-1}-1}{2}$ by part (a).

Mathematics in Programming
 Example : Finding the sum of a integers

Same Question: Prove that these programs prints the same results in case $n \geq 1$

$$
\begin{aligned}
& \text { For (i=1, i } \leq \mathrm{n} ; \mathrm{i}++ \text {) } \\
& \text { S=S+i; } \\
& \text { Print ("\%d", S); }
\end{aligned}
$$

$$
\begin{aligned}
& S=(n(n+1)) / 2 \\
& \text { Print }\left(" \% d^{\prime \prime}, S\right) ;
\end{aligned}
$$

Mathematics in Programming

Example: Finding the sum of a geometric series

Prove that these codes will return the same output.
int n, r, sum=0;
int i;
scanf("\%d",\&n);
scanf("\%d",\&r);

```
if(r!= 1) {
    for(i=0; i<=n ; i++) {
        sum = sum + pow(r,i);
    }
    printf("%d\n", sum);
}
```

int n, r, sum $=0$;
scanf("\%d",\&n);
scanf("\%d",\&r);
if(r $!=1)\{$ sum=((pow $(r, n+1))-1) /(r-1)$; printf("\%d\n", sum);
\}

5.3

Mathematical Induction II Proving Divisibility

Mathematics in Programming Proving Divisibility Property

What will the output of this program be for any input n ?

```
int n;
scanf("%d",&n);
if(n >= 0) {
    if( (pow(2,(2*n)) - 1) %3 == 0)
        printf("this property is true");
    else
        printf("this property isn't true");
}

\section*{Proving a Divisibility Property}

For all integers \(n \geq 0, \quad 2^{2 n}-1\) is divisible by 3 .
\[
3 \mid 2^{2 n}-1 \quad \leftarrow P(n)
\]

Basis Step: Show that \(P(0)\) is true. \(P(0): 2^{2.0}-1=2^{0}-1=1-1=0\) as \(3 \mid 0\), thus \(P(0)\) is true.
Inductive Step: Show that for all integers \(k \geq 0\), if \(P(k)\) is true then \(P(k+1)\) is also true:
Suppose: \(2^{2 k}-1\) is divisible by \(3 . \quad \leftarrow P(k)\) inductive hypothesis
\[
2^{2 k}-1=3 r \text { for some integer } r \text {. }
\]

We want to prove \(2^{2(k+1)}-1\) is divisible by 3 .
\[
\begin{aligned}
& 2^{2(k+1)}-1=2^{2 k+2}-1 \quad \text { by the laws of exponents } \\
= & 2^{2 k} \cdot 2^{2}-1=2^{2 k} \cdot 4-1 \\
= & 2^{2 k}(3+1)-1=2^{2 k} \cdot 3+\left(2^{2 k}-1\right)=2^{2 k} \cdot 3+3 r \\
= & 3\left(2^{2 k}+r\right) \quad \text { Which is integer }
\end{aligned}
\]
so, by definition of divisibility, \(2^{2(k+1)}-1\) is divisible by 3

\section*{Outline a proof by math induction for the statement:} For all integers \(n \geq 0,5^{n}-1\) is divisible by 4 .

\section*{Proof by mathematical induction:}

Let the property \(\mathrm{P}(n)\) be the sentence
\[
5^{n}-1 \text { is divisible by } 4 . \leftarrow \text { the property } P(n)
\]

Show that the property is true for \(n=0\) :
We must show that \(5^{0}-1\) is divisible by 4 .
But \(5^{0}-1=1-1=0\), and 0 is divisible by 4 because \(0=4 \cdot 0\).
Show that for all integers \(k \geq 0\), if the property is true for \(n=k_{1}\) then it is true for \(n=k+1\) :
Let \(k\) be an integer with \(k \geq 0\), and suppose that
[the property is true for \(n=k\).
\(5^{\boldsymbol{k}}-1\) is divisible by 4. \(\leftarrow\) inductive hypothesis
We must show that \(P(k+1)\) is true.
\(5^{k+1}-1\) is divisible by 4 .
\[
\begin{aligned}
5^{k+1}-1 & =5^{k} \cdot 5-1 \\
& =5^{k} \cdot(4+1)-1 \\
& =5^{k \cdot 4} \cdot 45^{k} \cdot 1-1 \\
& =5^{k} \cdot 4+\left(5^{k}-1\right)
\end{aligned}
\]

Note: Each of these terms is divisible by 4.
So: \(5^{k+1}-1=5^{k} \cdot 4+4 \cdot r \quad\) (where \(r\) is an integer)
\[
=4 \cdot\left(5^{k}+r\right)
\]
( \(5^{k}+r\) ) is an integer because it is a sum of products of integers, and so, by definition of divisibility \(5^{k+1}-1\) is divisible by 4 .

\section*{Proving Inequality}

For all integers \(n \geq 3,2 n+1<2^{n}\)
Let \(\mathrm{P}(n)\) be \(\quad 2 n+1<2^{n}\)
Basis Step: Show that \(P(3)\) is true. \(P(3): 2.3+1<2^{3}\) which is true.
Inductive Step: Show that for all integers \(k \geq 3\), if \(P(k)\) is true then \(P(k+1)\) is also true:
Suppose: \(2 k+1<2^{k}\) is true \(\leftarrow P(k)\) inductive hypothesis
\[
\begin{array}{ll}
2(k+1)+1<2^{k+1} \leftarrow P(k+1) \\
2 k+3=(2 k+1)+2 & \text { by algebra } \\
<2^{k}+2^{k} & \text { as } 2 \mathrm{k}+1<2^{k} \text { by the hypothesi } \\
& \text { and because } 2<2^{k} \quad(k \geq 2)
\end{array}
\]
\[
\therefore 2 k+3<2 \cdot 2^{k}=2^{k+1}
\]
[This is what we needed to show.]

\section*{Exercise}

\section*{For each positive integer \(n\), let \(P(n)\) be the property}
\[
2^{n}<(n+1)!
\]

\section*{Proving a Property of a Sequence}

Define a sequence \(a_{1}, a_{2}, a_{3} \ldots\) as follows:
\[
\begin{aligned}
& a_{1}=2 \\
& a_{k}=5 a_{k-1} \quad \text { for all integers } k \geq 2 .
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{a}_{1}=\mathbf{2} \\
& \mathbf{a}_{2}=5 a_{2-1}=5 a_{1}=5 \cdot 2=\mathbf{1 0} \\
& \mathbf{a}_{3}=5 a_{3-1}=5 a_{2}=5 \cdot 10=50 \\
& a_{4}=5 a_{4-1}=5 a_{3}=5 \cdot 50=\mathbf{2 5 0}
\end{aligned}
\]

Property \(\rightarrow\) The terms of the sequence satisfy the equation \(\mathrm{a}_{n}=2 \cdot 5^{n-1}\)

\section*{Proving a Property of a Sequence}

Prove this property:
\[
a_{n}=2 \cdot 5^{n-1} \text { for all integers } n \geq 1
\]

Basis Step: Show that \(P(1)\) is true. \(a_{1}=2 \cdot 5^{1-1}=2 \cdot 5^{0}=2\)
Inductive Step: Show that for all integers \(k \geq 1\), if \(P(k)\) is true then \(P(k+1)\) is also true:
Suppose: \(a_{k}=2 \cdot 5^{k-1}\)
\[
a_{k+1}=2.5^{k}
\]
\[
=5 a_{(k+1)-1} \quad \text { by definition of } a_{1}, a_{2}, a_{3} \ldots
\]
\[
=5 a_{k}
\]
\[
=5 \cdot\left(2 \cdot 5^{k-1}\right) \quad \text { by the hypothesis }
\]
\[
=2 \cdot\left(5 \cdot 5^{k-1}\right)
\]
\[
=2.5^{k}
\]
[This is what we needed to show.]

\section*{Important Formulas}

Formula for the sum of the first \(n\) integers: For all integers \(n \geq 1\),
\[
1+2+3+\cdots+n=\frac{n(n+1)}{2}
\]

Formula for the sum of the terms of a geometric sequence: For all real numbers \(r \neq 1\) and all integers \(n \geq 0\),
\[
1+r+r^{2}+r^{3}+\cdots+r^{n}=\frac{r^{n+1}-1}{r-1}
\]

\section*{Exercises}
a. \(1+2+3+\cdots+100=\frac{100(100+1)}{2}=50(101)=5050\)
b. \(1+2+3+\cdots+k=\frac{k(k+1)}{2}\)
c. \(1+2+3+\cdots+(k-1)=\frac{(k-1)((k-1)+1)}{2}=\frac{(k-1) k}{2}\)
d. \(4+5+6+\cdots+(k-1)=(1+2+3+\cdots+(k-1))-(1+2+3)\)
\[
=\frac{k(k-1)}{2}-(1+2+3)=\frac{k(k-1)}{2}-6
\]
e. \(3+3^{2}+3^{3}+\cdots+3^{k}=\left(1+3+3^{2}+3^{3}+\cdots+3^{k}\right)-1=\frac{3^{k+1}-1}{3-1}-1\)
\[
=\frac{3^{k+1}-1}{2}-1=\frac{3^{k+1}-1}{2}-\frac{2}{2}=\frac{3^{k+1}-3}{2}
\]
f. \(3+3^{2}+3^{3}+\cdots+3^{k}=3\left(1+3+3^{2}+\cdots+3^{k-1}\right)\)
\[
=3\left(\frac{3^{(k-1)+1}-1}{3-1}\right)=\frac{3\left(3^{k}-1\right)}{2}
\]```

